In this work, we prove that the set of link-homotopy classes of generalized string links over a closed, connected and orientable surface M of genus g ≥ 1 form a group, denoted by Bn(M) and we find a presentation for it. Moreover, we prove that its normal subgroup PBnn(M), namely, the homotopy string links over M, is bi-orderable. These results extend results proved by Juan GonzalezMeneses in [GM], [GM2] and Ekaterina Yurasovskaya in [Y], respectively. Also, we obtain an exact sequence for link-homotopy braid groups, which is an extension of [Go, Theorem 1]. / Sem resumo
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28042015-155522 |
Date | 13 October 2014 |
Creators | Lima, Juliana Roberta Theodoro de |
Contributors | Mattos, Denise de, Rolfsen, Dale |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0011 seconds