We discuss the appearance of quantum orders in the Hubbard model for interacting electrons, at half-filling. Such phases do not have local order parameters and need to be characterized by the quantum mechanical properties of their ground state. On one hand, we study the Mott transition from a metal to a spin liquid insulator in two dimensions, of potential relevance to some layered organic compounds. The correlation-driven transition occurs at fixed filling and involves fractionalization of the electron: upon entering the insulator, a Fermi surface of neutral spinons coupled to an internal gauge field emerges. We focus on the transport properties near the quantum critical point and find that the emergent gauge fluctuations play a key role in determining the universal scaling. Second, motivated by a class of three-dimensional transition metal oxides, the pyrochlore iridates, we study the interplay of non-trivial band topology and correlations. Building on the strong spin orbit coupling in these compounds, we construct a general microscopic Hubbard model and determine its mean-field phase diagram, which contains topological insulators, Weyl semimetals, axion insulators and various antiferromagnets. We also discuss the effects many-body correlations on theses phases. We close by examining a fractionalized topological insulator that combines the two main themes of the thesis: fractionalization and non-trivial band topology. Specifically, we study how the two-dimensional protected surface states of a topological Mott insulator interact with a three-dimensional emergent gauge field. Various correlation effects on observables are identified.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/35847 |
Date | 08 August 2013 |
Creators | Witczak-Krempa, William |
Contributors | Kim, Yong Baek |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds