Recent interests on the plastic deformation of strontium titanate (SrTiO3) are derived from its unusual ductile-to-brittle-to-ductile transition (DBDT). The transition is divided into three regimes (A, B and C) corresponding to the temperature range of 113 K to 1053 K (-160oC to 780oC), 1053 K to ~ 1503 K (780oC to ~ 1230oC) and ~ 1503 K to 1873 K (~ 1230oC to 1600oC), discovered by Sigle and colleagues in the MPI-Stuttgart. We report the dislocation substructures in (001) single crystal SrTiO3 deformed by Vickers indentation at room temperature, studied by scanning and transmission electron microscopy (SEM and TEM). Dislocation dipoles of screw and edge character are observed and confirmed by inside-outside contrast using g-vector by weak-beam dark field imaging. They are formed by edge trapping, jog dragging and cross slip-pinching off. Similar to dipole breaking off in deformed sapphire (£\-Al2O3) at 1200oC and £^-TiAl intermetallic at room temperature, the dipoles pinch off at one end, and emit a string of loops at trail. Two sets of slip systems {110}<-11 0> and {100}<011> are activated under both 100 g and 1 kg load. The suggestion is that plastic deformation has reached the stage II work hardening, which is characterized by multiplication of dislocations through cross slip, interactions between dislocations, and operating of multiple slip systems.
In nanoindentation experiments, it is generally believed that the shear stress at the onset of plasticity can approach the theoretical shear strength of an ideal. Here we report direct evidence that plasticity in a single crystal SrTiO3 can begin at very small forces, remarkably. However, the shear stresses associated with these very small forces is excess the theoretical shear strength of SrTiO3 (16.1 GPa). Our observations entail correlating quantitative load¡Vdisplacement measurements with individual stage microstructure during nanoindentation experiments in a transmission electron microscope. We also report direct evidence that with the prevalent notion that the first obvious displacement excursion in a nanoindentation test is indicative of the onset of plastic deformation. The SrTiO3 deforms elastically before the pop-in depth, but exhibits a plastic-elastic behavior after that. TEM observations reveal that the slip band is the predominant deformation mechanism in SrTiO3 during indentation. The cracks usually initiate at the intersection of slip bands to produce the sessile dislocations with Burger vectors [1-10] (or [110]) along the (110) (or (1-10)) crack plane. In addition, theoretical analysis confirms that the pop-in event is associated with the onset plasticity of SrTiO3.
The plastic deformation of (001) single crystal SrTiO3 is investigated using compression along [001] at room temperature. A total plastic strain of ~19+2% is consistently obtained. The stress-strain curve exhibiting four work-hardening stages are describable using the stage 0 of axis rotation, the stage I ¡§easy glide¡¨, the stage II multiple slip and the wall-and-cell structure, and the stage III work softening and dynamic recovery before sample fracture takes place. It is revealed by analyzing the microstructure for each work-hardening stage that the plastic deformation of single crystal SrTiO3 closely resembles that of metals. The primary slip systems of [011](0-11) and [01-1](011) predominate in stage I where plastic deformation occurs by the migration of kink pairs in collinear partial dislocations. The activation of multiple slips including [101](-101) and [10-1](101), and [011](0-11) and [0-11](011) in stage II produces the cell-and-wall structure which is also characteristic of plastically deformed metals. In stage III with decreasing work-hardening rate, the bow-out dislocation interaction from opposite walls results in annihilation. The reaction between dislocations from adjacent walls produces the resultant dislocations with b = [-110] parallel to the load axis [001]. These dislocations are sessile, which eventually leads to sample fracture.
We have analyzed the microstructure of <001> SrTiO3 single crystal deformed using compression at room temperature using transmission electron microscopy. A representative stress-strain (£m-£`) curve is established, similar to that for metals it consists of three hardening stages before failure occurs at a strain £` = 19+2%. Dislocation analysis suggests that the primary slip systems in [011](0-11) and [0-11](011) are activated in the £m-£` curve stress plateau region usually addressed as easy glide. Three characteristic features are identified from samples deformed to stage I hardening by easy glide: (a) rectangular glide loops, (b) collinear partials, and (c) kink pairs. Dislocations have predominantly pure edge character. Kink pairs are observed only on the edge segments suggesting that screw dislocations have higher mobility. In easy glide, the migration and annihilation of kink pairs occurring on both the trailing and leading partials lends support to a previous report by Castillo-Rodriguez and Sigle (2011) that dislocation glide is controlled by the long-segment limit of a kink-pair model. Pure edge dislocations are dissociated into collinear partials with b = 1/2[011] (or 1/2[0-11]) by glide in (0-11) (or(011)), and kink pairs are formed on both leading and trailing partials. The suggestion is that in the low-stress regime hardening by dislocation pile-up in stage I is compensated for by kink pair nucleation and migration. The overall hardening rate thus remains unchanged at approximately zero, resembling easy glide in the deformation of metals, over an increasing strain of £` ? 4% before reaching stage II hardening.
Microcrack nucleation and propagation behavior in the crack tip was investigated by using transmission electron microscopy (TEM) through compressive test and Vickers indenter. Observation results showed that fracture process was completed in this <001> SrTiO3 single crystal material by connecting dislocations. The crack were nucleated and developed in the dislocation free zone (DFZ) or super thinned area ahead of crack tip under local high stress concentration. The cracks were linked with each other by mutual dislocation emission which expedites the propagation of crack tips effectively. We suggested a dislocation based the Hirsch et al. model of plastic-zone evolution in which dislocations emitted from the crack tip glide away to form a crack-tip plastic zone. Each emitted dislocation reduces the crack tip stress intensity via elastic interactions (the ¡¥¡¥shielding¡¨ effect).
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0814112-205123 |
Date | 14 August 2012 |
Creators | Yang, Kai-hsun |
Contributors | Wei-Xin Duan, Bing-Hwai Hwang, Hong-Yang Lu, Yu-Chuan Wu, New-Jin Ho, Ming-Horng-Lin |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0814112-205123 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0028 seconds