Return to search

The renormalization group for disordered systems / Le groupe de renormalisation pour les systèmes désordonnés

Dans le cadre de cette thèse nous utilisons les techniques du groupe de renormalisation pour étudier des systèmes vitreux. Plus précisément, nous étudions des modèles de verres de spins et de verres structuraux.Le modèles de verres de spin représentent des matériaux magnétiques désordonnés uniaxaux, comme une solution diluée de Mn en Cu, donnée par un réseau de spins situés sur le Mn et disposés aléatoirement dans le réseau des atomes de Cu. Ces spins interagissent entre eux avec un potentiel qui oscille en fonction de la séparation entre les spins. Quant aux modèles de verres structuraux, ils représentent des liquides qui ont été refroidis assez rapidement pour ne pas cristalliser, comme le o-Terphényle ou le Glycérol. Les verres se spin et les verres structuraux sont intéressants physiquement parce que leurs propriétés critiques ne sont connues que dans la limite où la dimension de l'espace tends ver l'infinie, c'est-à-dire dans l'approximation de champ moyen. Une question fondamentale est si les propriétés physiques qui caractérisent ces systèmes dans le cas du champ moyen restent ou pas valables pour des verres de spin et des verres structuraux réels, qui sont dans un espace avec un nombre finie de dimensions.Les modèles de verres de spin et de verres structuraux que nous étudions dans ce travail de thèse sont des des modèles construits sur des réseaux hiérarchiques, qui sont les systèmes non-champ moyen les plus simples où l'approche du groupe de renormalisation peut être implémentée de façon naturelle. Les propriétés qui émergent de l'implémentation de la transformation du groupe de renormalisation clarifient le comportement critique de ces systèmes. En ce qui concerne le modèle de verre de spin en dimension finie que nous avons étudié, nous avons développé une nouvelle technique pour implémenter la transformation du groupe de renormalisation pour les verres de spin en dimension finie. Cette technique montre que le système a une transition de phase, caractérisée par un point critique où la longueur de corrélation du système devient infinie. Quant au modèle de verre structural en dimension finie que nous avons étudié, ceci est le premier modèle de verre structural pour lequel on a démontré l'existence d'une transition de phase au delà du champ moyen. Les idées introduites dans ce travail peuvent être développées dans le but de comprendre la structure de la phase de basse température de ces systèmes, et dans le but comprendre si les propriétés de la phase de basse température du champ moyen continuent à être valables pour les systèmes vitreux en dimension finie. / In this thesis we investigate the employ of the renormalization group for glassy systems. More precisely, we focus on models of spin glasses and structural glasses. Spin-glass models represent disordered uniaxial magnetic materials, such as a dilute solution of Mn in Cu, modeled by an array of spins on the Mn arranged at random in the matrix of Cu, and interacting with a potential which oscillates as a function of the separation of the spins. Structural glasses are liquids that have been cooled fast enough to avoid crystallization, like o-Terphenyl or Glycerol. Spin and structural glasses are physically interesting because their critical properties are known only in the limit where the space dimensionality tends to infinity, i. e. in the mean-field approximation. A fundamental question is whether the physical properties characterizing these systems in the mean-field case still hold for real spin or structural glasses, which live in a space with a finite number of dimensions. The spin and structural glasses that we study in this thesis are models built up on hierarchical lattices, which are the simplest non-mean field systems where the renormalisation group approach can be implemented in a natural way. The features emerging from this implementation clarify the critical behavior of these systems. As far as the finite-dimensional spin glass studied in this thesis is concerned, we developed a new technique to implement the renormalization group transformation for finite-dimensional spin glasses. This technique shows that the system has a finite-temperature phase transition characterized by a critical point where the system's correlation length is infinite. As far as the structural glass studied in this thesis is concerned, this is the first structural glass model where we showed the existence of a phase transition beyond mean field. The ideas introduced in this work can be further developed in order to understand the structure of the low-temperature phase of these systems, and in order to establish whether the properties of the low-temperature phase holding in the mean-field case still hold for finite-dimensional glassy systems.

Identiferoai:union.ndltd.org:theses.fr/2012PA112006
Date31 January 2012
CreatorsCastellana, Michele
ContributorsParis 11, Università degli studi La Sapienza (Rome), Mézard, Marc, Parisi, Giorgio
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0018 seconds