Return to search

Embedded Intelligence In Structural Health Monitoring Using Artificial Neural Networks

The use of composite structures in engineering applications has proliferated over the past few decades due to its distinct advantages namely: high structural performance, corrosion resistance, and high strength/weight ratio. However, they also come with a set of disadvantages, i.e. they are prone to fibre breakage, matrix cracking and delaminations. These types of damage are often invisible and if undetected, could lead to catastrophic failures of structures. Although there are systems to detect such damage, the criticality assessment and prognosis of the damage is often much more difficult to achieve. The research study conducted here resulted in the development of a Structural Health Monitoring (SHM) system for a 2D polymeric composite T-joint, used in maritime structures. The SHM system was found to be capable of not only detecting the presence of multiple delaminations in a composite structure, but also capable of determining the location and extent of all t he delaminations present in the T-joint structure, regardless of the load (angle and magnitude) acting on the structure. The system developed relies on the examination of the strain distribution of the structure under operational loading. This SHM system necessitated the development of a novel pre-processing algorithm - Damage Relativity Assessment Technique (DRAT) along with a pattern recognition tool, Artificial Neural Network (ANN), to predict and estimate the damage. Another program developed - the Global Neural network Algorithm for Sequential Processing of Internal sub Networks (GNAISPIN) uses multiple ANNs to render the SHM system independent to variations in structural loading and capable of estimating multiple delaminations in composite T-joint structures. Upto 82% improvement in detection accuracy was observed when GNAISPIN was invoked. The Finite Element Analysis (FEA) was also conducted by placing delaminations of different sizes at various locations in two structures, a composite beam and a T-joint. Glass Fibre Reinforced Polymer T-joints were then manufactured and tested, thereby verifying the accuracy of the FEA results experimentally. The resulting strain distribution from the FEA was pre-processed by the DRAT and used to trai n the ANN to predict and estimate damage in the structures. Finally, on testing the SHM system developed with strain signatures of composite T-joint structures, subjected to variable loading, embedded with all possible damage configurations (including multiple damage scenarios), an overall damage (location & extent) prediction accuracy of 94.1% was achieved. These results are presented and discussed in detail in this study.

Identiferoai:union.ndltd.org:ADTP/210255
Date January 2007
CreatorsKesavan, Ajay, not supplied
PublisherRMIT University. Aerospace, Mechanical and Manufacturing Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Ajay Kesavan

Page generated in 0.002 seconds