The cryopreservation of cells and tissues requires the addition of a cryoprotectant in order to prevent cellular damage caused by ice. Unfortunately, common cryoprotectants such as DMSO and glycerol exhibit significant toxicity which makes their use unfeasible for many clinical procedures. Our laboratory is interested in the development of alternative, non-toxic cryoprotectants which possess ice recrystallization inhibition (IRI) activity. Potent IRI activity has recently been discovered in certain small molecules, but the structural features required for this process are unclear. Herein we report the development of a library of O-aryl glycosides in order to probe the importance of electron density and hydrophobic moieties for IRI activity. It was found that the degree of electron density at the anomeric oxygen does not correlate with IRI ability in para-substituted aryl glycosides, nor does changing the position of the aryl substituent impart a predictable effect on activity. However, the addition of hydrophobic alkyl or acyl chains was beneficial for IRI activity; generally, increasing chain length was found to correlate with increasing activity. In some instances, an optimal alkyl chain length was identified, after which continued lengthening results in a loss of potency. We conclude from this study that a certain extent of hydrophobic character is beneficial for the IRI activity of aryl glycosides, and that a balance between hydrophobicity and hydrophilicity is required for optimum IRI ability. It is hoped that these findings will aid future efforts towards the rational design of novel cryoprotectants.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/30335 |
Date | 17 December 2013 |
Creators | Alteen, Matthew |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0019 seconds