This work aims at providing a novel camera motion estimation pipeline from large collections of unordered omnidirectional images. In oder to keep the pipeline as general and flexible as possible, cameras are modelled as unit spheres, allowing to incorporate any central camera type. For each camera an unprojection lookup is generated from intrinsics, which is called P2S-map (Pixel-to-Sphere-map), mapping pixels to their corresponding positions on the unit sphere. Consequently the camera geometry becomes independent of the underlying projection model. The pipeline also generates P2S-maps from world map projections with less distortion effects as they are known from cartography. Using P2S-maps from camera calibration and world map projection allows to convert omnidirectional camera images to an appropriate world map projection in oder to apply standard feature extraction and matching algorithms for data association. The proposed estimation pipeline combines the flexibility of SfM (Structure from Motion) - which handles unordered image collections - with the efficiency of PGO (Pose Graph Optimization), which is used as back-end in graph-based Visual SLAM (Simultaneous Localization and Mapping) approaches to optimize camera poses from large image sequences. SfM uses BA (Bundle Adjustment) to jointly optimize camera poses (motion) and 3d feature locations (structure), which becomes computationally expensive for large-scale scenarios. On the contrary PGO solves for camera poses (motion) from measured transformations between cameras, maintaining optimization managable. The proposed estimation algorithm combines both worlds. It obtains up-to-scale transformations between image pairs using two-view constraints, which are jointly scaled using trifocal constraints. A pose graph is generated from scaled two-view transformations and solved by PGO to obtain camera motion efficiently even for large image collections. Obtained results can be used as input data to provide initial pose estimates for further 3d reconstruction purposes e.g. to build a sparse structure from feature correspondences in an SfM or SLAM framework with further refinement via BA.
The pipeline also incorporates fixed extrinsic constraints from multi-camera setups as well as depth information provided by RGBD sensors. The entire camera motion estimation pipeline does not need to generate a sparse 3d structure of the captured environment and thus is called SCME (Structureless Camera Motion Estimation).:1 Introduction
1.1 Motivation
1.1.1 Increasing Interest of Image-Based 3D Reconstruction
1.1.2 Underground Environments as Challenging Scenario
1.1.3 Improved Mobile Camera Systems for Full Omnidirectional Imaging
1.2 Issues
1.2.1 Directional versus Omnidirectional Image Acquisition
1.2.2 Structure from Motion versus Visual Simultaneous Localization and Mapping
1.3 Contribution
1.4 Structure of this Work
2 Related Work
2.1 Visual Simultaneous Localization and Mapping
2.1.1 Visual Odometry
2.1.2 Pose Graph Optimization
2.2 Structure from Motion
2.2.1 Bundle Adjustment
2.2.2 Structureless Bundle Adjustment
2.3 Corresponding Issues
2.4 Proposed Reconstruction Pipeline
3 Cameras and Pixel-to-Sphere Mappings with P2S-Maps
3.1 Types
3.2 Models
3.2.1 Unified Camera Model
3.2.2 Polynomal Camera Model
3.2.3 Spherical Camera Model
3.3 P2S-Maps - Mapping onto Unit Sphere via Lookup Table
3.3.1 Lookup Table as Color Image
3.3.2 Lookup Interpolation
3.3.3 Depth Data Conversion
4 Calibration
4.1 Overview of Proposed Calibration Pipeline
4.2 Target Detection
4.3 Intrinsic Calibration
4.3.1 Selected Examples
4.4 Extrinsic Calibration
4.4.1 3D-2D Pose Estimation
4.4.2 2D-2D Pose Estimation
4.4.3 Pose Optimization
4.4.4 Uncertainty Estimation
4.4.5 PoseGraph Representation
4.4.6 Bundle Adjustment
4.4.7 Selected Examples
5 Full Omnidirectional Image Projections
5.1 Panoramic Image Stitching
5.2 World Map Projections
5.3 World Map Projection Generator for P2S-Maps
5.4 Conversion between Projections based on P2S-Maps
5.4.1 Proposed Workflow
5.4.2 Data Storage Format
5.4.3 Real World Example
6 Relations between Two Camera Spheres
6.1 Forward and Backward Projection
6.2 Triangulation
6.2.1 Linear Least Squares Method
6.2.2 Alternative Midpoint Method
6.3 Epipolar Geometry
6.4 Transformation Recovery from Essential Matrix
6.4.1 Cheirality
6.4.2 Standard Procedure
6.4.3 Simplified Procedure
6.4.4 Improved Procedure
6.5 Two-View Estimation
6.5.1 Evaluation Strategy
6.5.2 Error Metric
6.5.3 Evaluation of Estimation Algorithms
6.5.4 Concluding Remarks
6.6 Two-View Optimization
6.6.1 Epipolar-Based Error Distances
6.6.2 Projection-Based Error Distances
6.6.3 Comparison between Error Distances
6.7 Two-View Translation Scaling
6.7.1 Linear Least Squares Estimation
6.7.2 Non-Linear Least Squares Optimization
6.7.3 Comparison between Initial and Optimized Scaling Factor
6.8 Homography to Identify Degeneracies
6.8.1 Homography for Spherical Cameras
6.8.2 Homography Estimation
6.8.3 Homography Optimization
6.8.4 Homography and Pure Rotation
6.8.5 Homography in Epipolar Geometry
7 Relations between Three Camera Spheres
7.1 Three View Geometry
7.2 Crossing Epipolar Planes Geometry
7.3 Trifocal Geometry
7.4 Relation between Trifocal, Three-View and Crossing Epipolar Planes
7.5 Translation Ratio between Up-To-Scale Two-View Transformations
7.5.1 Structureless Determination Approaches
7.5.2 Structure-Based Determination Approaches
7.5.3 Comparison between Proposed Approaches
8 Pose Graphs
8.1 Optimization Principle
8.2 Solvers
8.2.1 Additional Graph Solvers
8.2.2 False Loop Closure Detection
8.3 Pose Graph Generation
8.3.1 Generation of Synthetic Pose Graph Data
8.3.2 Optimization of Synthetic Pose Graph Data
9 Structureless Camera Motion Estimation
9.1 SCME Pipeline
9.2 Determination of Two-View Translation Scale Factors
9.3 Integration of Depth Data
9.4 Integration of Extrinsic Camera Constraints
10 Camera Motion Estimation Results
10.1 Directional Camera Images
10.2 Omnidirectional Camera Images
11 Conclusion
11.1 Summary
11.2 Outlook and Future Work
Appendices
A.1 Additional Extrinsic Calibration Results
A.2 Linear Least Squares Scaling
A.3 Proof Rank Deficiency
A.4 Alternative Derivation Midpoint Method
A.5 Simplification of Depth Calculation
A.6 Relation between Epipolar and Circumferential Constraint
A.7 Covariance Estimation
A.8 Uncertainty Estimation from Epipolar Geometry
A.9 Two-View Scaling Factor Estimation: Uncertainty Estimation
A.10 Two-View Scaling Factor Optimization: Uncertainty Estimation
A.11 Depth from Adjoining Two-View Geometries
A.12 Alternative Three-View Derivation
A.12.1 Second Derivation Approach
A.12.2 Third Derivation Approach
A.13 Relation between Trifocal Geometry and Alternative Midpoint Method
A.14 Additional Pose Graph Generation Examples
A.15 Pose Graph Solver Settings
A.16 Additional Pose Graph Optimization Examples
Bibliography
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79954 |
Date | 08 August 2022 |
Creators | Sastuba, Mark |
Contributors | Jung, Bernhard, Schneider, Danilo, Technische Universität Bergakademie Freiberg |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds