Chemical hardness (eta), calculated by density functional theory (DFT), was firstly used as one of the chemical reactivity descriptors to set up the one descriptor 2D-QSAR model of platinum drugs. In this simple but promising model, the antitumour activities (log GI50) evaluated by National Cancer Institute (NCI) of structure-based groups containing normal sp 3 nitrogen and R,R-diamminecyclohexane (R,R-DACH) as the ligand showed good correlation. It was also demonstrated that silane and stereoisomers of DACH groups showed special patterns. This study also made use of the COMPARE program from NCI to evaluate the activity profile and the analysis of the data revealed these distinct patterns are influenced by the mechanism of the drugs. / Computer-aided drug design (CADD) techniques have been applied to establish quantitative structure-activity relationships (QSAR) and quantitative structure- property relationships (QSPR) models. Although these techniques are widely used in organic drugs, new metal-based drugs were hindered from development for lack of metal parameters, such as potent new platinum drugs as a major group of drugs used in cancer treatment. The purpose of the present study, therefore, is to generate novel platinum parameters based on previous work and then set up the simple QSAR/QSPR model with predictive abilities. / Finally, two 3D-QSAR and 3D-QSPR models obtained using Sybyl software. One was for demethylcantharidin (DMC) analogues as phosphatase 2A (PP2A) inhibitors. The other was describing the hydrophobicity of platinum drugs. In this research, the platinum atom was introduced to Sybyl and thus made it possible for the first time to use comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods to investigate platinum drugs. All 3D models indicated good predictive ability and thus provided an effective method to design new potent platinum drugs. / To clarify the pattern of stereoisomers of the DACH group, new platinum parameters was introduced to the AMBER software successfully. Moreover, stereoisomers of the DACH group which formed 1,2-GG intrastrand cross-links with DNA were studied by molecular dynamics (MD) simulations using AMBER. The calculated binding energies between R,R-DACH-Pt, S,S-DACH-Pt and cis-DACHPt moieties and DNA revealed a strong correlation with antitumour activities. The result provided more clues to understand the biological interactions of chiral platinum drugs. DNA structure analysis indicated that DNA tolerated the distortion resulted in the different Pt-DNA adducts and various local and global structure distortions were found. Natural bond orbital (NBO) analysis of hydrogen bonding on Pt-DNA adducts at a AGGC site revealed that R,R-DACH-Pt moiety alleviated the repulsion by unwinding the DNA, whereas the S,S-DACH-Pt adduct avoided the interaction by distorting the H bonds of binding site basepairs. Hence, the structural differences of chiral platinum drug led to its distinct activity. / Yang, Lifeng. / "June 2008." / Advisers: Steve C. F. Au Yeung; Yee-Ping Ho. / Source: Dissertation Abstracts International, Volume: 70-03, Section: B, page: 1541. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (p. 159-172). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344171 |
Date | January 2008 |
Contributors | Yang, Lifeng., Chinese University of Hong Kong Graduate School. Division of Chemistry. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (xvii, 172 p. : ill.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0021 seconds