Surrogate fuels are mixtures of pure hydrocarbons that mimic specific properties of a real fuel. The use of a small number of pure compounds in their formulation ensures that chemical composition is well controlled, helping increase reproducibility of experiments and reduce the computational cost associated with numerical modeling.
In this work, surrogate mixtures were developed for Jet A fuel based on correlations between fuel properties (cetane number, smoke point, threshold sooting index (TSI), density, viscosity, boiling point and freezing point) and the nuclear magnetic resonance (NMR) spectra of the fuel as a measure of the fuel's chemical composition. Comparison of the chemical composition and target fuel properties of the surrogate fuels developed in this work to a Jet A fuel sample and other surrogate fuels proposed in the literature revealed the superiority of these surrogate fuels in mimicking the fuel properties of interest.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/43267 |
Date | 05 December 2013 |
Creators | Nasseri, Seyed Ali |
Contributors | Gulder, Omer L. |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds