Cette thèse est dédiée à l'analyse probabiliste d'algorithmes de réduction des réseaux euclidiens. Un réseau euclidien est l'ensemble de combinaisons linéaires à coefficients entiers d'une base (b_1,..., b_n ) \subset R^n. La réduction d'un réseau consiste a en trouver une base formée de vecteurs assez courts et assez orthogonaux, à partir d'une base donnée en entrée. Le célèbre algorithme LLL résout ce problème de manière efficace en dimension arbitraire. Il est très utilisé, mais mal compris. Nous nous concentrons sur son analyse dans le cas n = 2, où LLL devient l'algorithme de Gauss, car cette instance est une brique de base pour le cas n>= 3. Nous analysons précisément l'algorithme de Gauss, tant du point de vue de son exécution (nombre d'itérations, complexité binaire, coûts "additifs") que de la géométrie de la base de sortie (défaut d'Hermite, premier minimum et deuxième minimum orthogonalisé). Nous travaillons dans un modèle probabiliste très général, qui permet d'étudier aussi bien les instances faciles que les instances difficiles. Ce modèle nous a permis d'étudier la transition vers l'algorithme d'Euclide, qui correspond au cas où les vecteurs de la base d'entrée sont colinéaires. Nous utilisons des méthodes dynamiques : les algorithmes sont vus comme des systèmes dynamiques, et les séries génératrices concernées s'expriment en fonction de l'opérateur de transfert. Ces résultats très précis en dimension 2 sont une première étape pour l'analyse de l'algorithme LLL dans le cas général.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01073359 |
Date | 17 July 2009 |
Creators | Vera, Antonio |
Publisher | Université de Caen |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds