Return to search

Mapping with Modern Prosumer Small Unmanned Aircraft Systems: Addressing the Geospatial Accuracy Debate

Modern prosumer small unmanned aircraft systems (sUAS) have eliminated many historical barriers to aerial remote sensing and photogrammetric survey data generation. The relatively low cost and operational ease of these platforms has driven their adoption for numerous geospatial applications including professional surveying and mapping. However, significant debate exists among geospatial professionals and academics regarding prosumer sUAS ability to achieve “survey-grade” geospatial accuracy ≤ 0.164 ft. in their derivative survey data. To address this debate, a controlled accuracy test experiment was conducted in accordance with federal standards whereby prosumer sUAS geospatial accuracies were reported between 15.367 ft. – 0.09 ft. horizontally and 496.734 ft. – 0.330 ft. vertically at the 95% confidence level. These results suggest prosumer sUAS derived survey data fall short of “survey-grade” accuracy in this experiment. Therefore, traditional surveying instruments and methods should not be relinquished in favor of prosumer sUAS for complex applications requiring “survey-grade” accuracy at this time.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4010
Date10 August 2018
CreatorsDixon, Madison Palacios
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0022 seconds