Return to search

Opti-acoustic Stereo Imaging

In this thesis, opti-acoustic stereo imaging, which is the deployment of two-dimensional (2D) high frequency imaging sonar with the electro-optical camera in calibrated stereo configuration, is studied.
Optical cameras give detailed images in clear waters. However, in dark or turbid waters, information coming from electro-optical sensor is insufficient for accurate scene perception. Imaging sonars, also known as acoustic cameras, can provide enhanced target details under these scenarios. To illustrate these visibility conditions, a 2D high frequency imaging sonar simulator as well as an underwater optical image simulator is developed. A computationally efficient algorithm is also proposed for the post-processing of the returned sonar signals.
Where optical visibility allows, integration of the sonar and optical images effectively provides binocular stereo vision capability and enables the recovery of three-dimensional (3D) structural information. This requires solving the feature correspondence problem for these completely different sensing modalities. Geometrical interpretation of this problem is examined on the simulated optical and sonar images. Matching the features manually, 3D reconstruction performance of opti-acoustic system is also investigated. In addition, motion estimation from opti-acoustic image sequences is studied.
Finally, a method is proposed to improve the degraded optical images with the help of sonar images. First, a nonlinear mapping is found to match local the features in opti-acoustical images. Next, features in the sonar image is mapped to the optical image using the transformation. Performance of the mapping is evaluated for different scene geometries.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614782/index.pdf
Date01 September 2012
CreatorsSac, Hakan
ContributorsLeblebicioglu, Kemal
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0023 seconds