This master's thesis focuses on 3D reconstruction of vehicles passing in front of a traffic surveillance camera. Calibration process of surveillance camera is first introduced and the relation of automatic calibration with 3D information about observed traffic is described. Furthermore, Structure from Motion, SLAM, and optical flow algorithms are presented. A set of experiments with feature matching and the Structure from Motion algorithm is carried out to examine results on images of passing vehicles. Afterwards, the Structure from Motion pipeline is modified. Instead of using SIFT features, DeepMatching algorithm is utilized to obtain quasi-dense point correspondences for the subsequent reconstruction phase. Afterwards, reconstructed models are refined by applying additional constraints specific to the vehicle reconstruction task. The resultant models are then evaluated. Lastly, observations and acquired information about the process of vehicle reconstruction are utilized to form proposals for prospective design of an entirely custom pipeline that would be specialized for 3D reconstruction of passing vehicles.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:363901 |
Date | January 2017 |
Creators | Dobeš, Petr |
Contributors | Sochor, Jakub, Herout, Adam |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds