Dans une aviation où la sécurité des vols est au cœur des préoccupations des constructeurs, le contrôle de santé des structures est l'un des nouveaux pôles majeurs de recherche et développement engagé par la communauté aéronautique depuis ces dix dernières années. Un système SHM (structural Heath monitoring) intégré aux structures avioniques (tels que le sont déjà les systèmes de monitoring des moteurs) permettrait de : - rendre l’aviation plus sûre et éviterait certains des accidents aériens ; - réduire les coûts de maintenance ; - alléger, à terme, le poids total car cela permettrait de d’éviter les sur-renforcements structuraux actuels. Le travail développé durant cette thèse, dans le cadre d'un projet industriel, concerne le développement de solutions exploitant l'utilisation de nœuds piezoélectriques au sein de microsystèmes reconfigurables dédiés à la détection de défauts dans des éléments de structure d'avion. L'exploitation de données issues de la génération/capture d'ondes de Lamb ainsi que des techniques se basant sur l'étude de l'impédance électromécanique du capteur ont été développées et étudiées sur différents types de défauts identifiés tels que cracks, corrosion, délaminages etc... La méthode proposée repose sur la comparaison et l'évolution dans le temps de signatures de réseaux de capteurs utilisant l’effet piezoélectrique et placés sur des éléments choisis de structures avions. L'interface capteur-matériau a été spécialement étudiée afin de garantir le couplage le plus efficace possible. Les techniques de « monitoring » ainsi développées ont été testées sur des structures aéronautiques métalliques et des structures en matériaux composites simples/sandwichs extraites d’avions Airbus et ATR. Différentes solutions d’intégration de ces capteurs et nœuds ont été passées en revue et une démarche a été proposée, allant de l’architecture des effecteurs au conditionnement et à la transmission des signaux et informations d’intéret. Une nouvelle vision de l’électronique de détection de défauts, permettant de développer une instrumentation « universelle » de capteurs à travers une combinaison de circuits numériques/analogiques reconfigurables à entrées/sorties versatiles, a été implémentée et testée avec succès / Structural health monitoring (SHM) is certainly one of the key technologies required to provide the safety and the reliability of future aviation. Based on non-destructive testing, current on the ground periodical structural integrity inspections showed their limit as evidenced by the Columbia tragedy. For the time being, structural health monitoring technology has reached a good technology readiness level (TRL). However, the integration of these solutions into future aerospace vehicle will require advanced and innovative system architecture. Further, improved SHM techniques and alleged assessment algorithm will be necessary to ensure an embedded integration, as well as to fully exploit their sensing capability. For now, most of high critical embedded systems are based on federate architectures, where each calculator is dedicated to a specific function and to a unique kind of sensor. By consequence, the integration on the field of conventional SHM solutions is highly difficult due to the scale and the weight of the global electronics systems. Based on a fully reconfigurable micro-system, I propose in this thesis, a novel SHM approach that combines into a unique System on Chip: • Sensors instrumentation and interfacing using reconfigurable analog circuits• Signal management and conditioning using reconfigurable digital electronics • Heath diagnostic assessment algorithms using an embedded CPUBased on elastic guided waves and electromechanical impedance analysis, the presented solution is capable through piezoelectric sensors to detect different kinds of abnormal events such as impacts. Moreover, using advanced wavelet transform and signature comparison algorithms, the system is also capable to detect mechanical damages such as corrosion, cracks or delaminations ; no matter if the probed structure is in simple composite, honeycomb composite or metallic alloy. The feasibility was proven using multiples specimens directly extracted from Airbus and ATR airplanes. To cover large areas, the system is fully scalable and accepts a hardware upgrade through multiple communication ports and protocols. Moreover, the versatility of inputs/outputs interface allows the exploitation of multiple sensors in order to locate and triangulate flaws
Identifer | oai:union.ndltd.org:theses.fr/2013ISAT0037 |
Date | 07 October 2013 |
Creators | Boukabache, Hamza |
Contributors | Toulouse, INSA, Fourniols, Jean-Yves, Escriba, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds