Polymer thin membranes are used in a variety of deployable structures that require large areas and compact stowage. Packaging membrane structures often involves creasing the membrane along predefined fold lines to enforce the desired kinematics under folding action. Inducing permanent deformation by folding to a high curvature is a common method to create creases, particularly in the design of solar sails. The distinct mechanical characteristics at the crease regions have a profound effect on the subsequent deployment and tensioning of the membrane structures. The mechanical and geometric properties at the crease are related to the crease formation process, but the relationship is not well understood due to the presence of viscoelasticity and plasticity. This thesis seeks to investigate the relation between permanent material deformation and creasing behavior. In particular, creasing experiments are performed on polyimide thin films to identify the conditions for creasing onset. Uniaxial tension yield tests are conducted to relate material yielding with creasing onset.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1823 |
Date | 01 December 2021 |
Creators | Allen, Andrew |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations, 2020- |
Page generated in 0.0017 seconds