Two common classes of filter functions in use today, Butterworth functions and Chebyshev functions, are based upon solutions to special cases of the Sturm-Liouville equation. Here, solutions to several other special cases of the Sturm-Liouville equation were used to develop filter functions, and the properties of the resulting filters were examined. The following functions were explored: Chebyshev functions of the second kind, untraspherical functions of the second and third kinds, Hermite functions, and Legendre functions. Filter functions were developed for each of the first five polynomials in each series of functions, and magnitude and phase responses were tabulated and plotted. One of the classes of functions, the Hermite functions, led to filters which have a significant advantage over the commonly used Chebyshev filters in passband magnitude response, and were essentially the same as Chebyshev filters in stopband magnitude response and phase response.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:rtd-1402 |
Date | 01 October 1979 |
Creators | Chapman, Stephen Joseph |
Publisher | University of Central Florida |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Retrospective Theses and Dissertations |
Rights | Public Domain |
Page generated in 0.0023 seconds