Styrene-butadiene rubber (SBR) copolymer nanosized latex particles were synthesized via differential microemulsion polymerization (DMP) in a 300ml bench-scale semi-batch reactor, equipped with a thermocouple and a magnetic four-blade stirrer. This approach employed a continuous and slow addition of styrene and butadiene monomers drop-wise into a continuous aqueous phase comprising DI water, an initiator, a surfactant and a chain transfer agent. It was found that this approach offered an efficient heterogeneous phase path to synthesize styrene-butadiene copolymer latices with a high-butadiene-level of the resulting latex particles. The latex nanoparticles were formed as the SBR copolymer monomers undergo a self-assembly process in the continuous phase and were stabilized by their surrounding surfactant particles. The size of the latex particles could be easily adjusted by alternating the monomer addition speed, the reaction temperature, the amount of chain transfer agent applied and the type and the amount of surfactant introduced in the process. Not surprisingly, a small amount of chain transfer agent introduced into the DMP system might facilitate micellar nucleation and reduction of gel content in the polymer dramatically and may also aid increasing the size of the SBR latex particles. Owing to the small size of SBR latices prepared by the DMP method, the glass transition temperature (Tg) of the latices is much lower than the SBR latices generated by conventional technique. Furthermore, the increase of Tg was observed with an increase of the SBR particle size.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/6561 |
Date | 06 November 2014 |
Creators | Zou, Rifang |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0023 seconds