Return to search

A Study of Non-Smooth Impacting Behaviors

<p>The dynamics of impacting components is of particular interest to engineers due to concerns about noise and wear, but is particularly difficult to study due to impact's non-linear nature. To begin transferring concepts studied purely analytically to the world of physical mechanisms, four experiments are outlined, and important non-linear concepts highlighted with these systems. A linear oscillator with a kicked impact, an impacting forced pendulum, two impacting forced pendulums, and a cam follower pair are studied experimentally, with complementary numerical results.</p><p>Some important ideas highlighted are limit cycles, basins of attraction with many wells, grazing, various forms of coexistence, super-persistent chaotic transients, and liftoff. These concepts are explored using a variety of non-linear tools such as time lag embedding and stochastic interrogation, and discussions of their intricacies when used in non-smooth systems yield important observations for the experimentalist studying impacting systems. </p><p>The focus is on experimental results with numerical validation, and spends much time discussing identification of these concepts from an experiment-first mindset, rather than the more traditional analytical-first approach. As such a large volume of experimentally important information on topics such as transducers and forcing mechanism construction are included in the appendices.</p> / Dissertation

Identiferoai:union.ndltd.org:DUKE/oai:dukespace.lib.duke.edu:10161/10499
Date January 2015
CreatorsGeorge, Christopher Michael
ContributorsVirgin, Lawrence N
Source SetsDuke University
Detected LanguageEnglish
TypeDissertation

Page generated in 0.1816 seconds