Frequent climatic shocks have presented challenges for rainfed agriculture in sub-Saharan Africa. Appropriate water management practices are among the solutions to the challenges. The role of water harvesting in achieving sustainable agricultural intensification and specified resilience was explored. Suitable areas for water harvesting in the Upper Blue Nile basin were identified. The usefulness of the Curve Number method for surface runoff estimation was evaluated, and was found to perform satisfactorily. The impact of climate change in the Lake Tana sub-basin was studied. A decision support system was developed for locating and sizing of water harvesting ponds in the SWAT model. Methodological developments enabled analysis of the implications of water harvesting intensification in a meso-scale watershed in the Lake Tana sub-basin. Results suggest that water harvesting can increase agricultural productivity, sustain ecosystems and build specified resilience, and thereby contribute to sustainable agricultural intensification. There is considerable potential for water harvesting in the Upper Blue Nile Basin. Rainfall may increase in the Lake Tana sub-basin due to climate change. Supplementary irrigation from water harvesting ponds and better nutrient application increased staple crop production by up to three-fold. Moreover, a substantial amount of cash crop was produced using dry seasonal irrigation. Water harvesting altered the streamflow regime, and reduced sediment loss from the watershed. Water harvesting can play an important role in food security. It showed potential to buffer climatic variability. In the watershed studied, water harvesting will not compromise the environmental water requirements. Instead, increased low flows, and reduced flooding and sediment loss may benefit the social-ecological systems. The adverse effects of disturbance of the natural flow variability and sediment influx to certain riverine ecosystems warrant detailed investigation. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 5: Epub ahead of print. Paper 6: Manuscript.</p> / Water resources management and social-ecological resilience
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-102878 |
Date | January 2014 |
Creators | Dile, Yihun |
Publisher | Stockholms universitet, Stockholm Resilience Centre, Stockholm : Stockholm Resilience Centre, Stockholm University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds