With the increment of mobile, biomedical and space applications, digital systems with
low-power consumption are required. As a main part in digital systems, low-power memories are
especially desired. Reducing the power supply voltages to sub-threshold region is one of the
effective approaches for ultra low-power applications. However, the reduced Static Noise
Margin (SNM) of Static Random Access Memory (SRAM) imposes great challenges to the subthreshold SRAM design. The conventional 6-transistor SRAM cell does not function properly at sub-threshold supply voltage range because it has no enough noise margin for reliable operation. In order to achieve ultra low-power at sub-threshold operation, previous research work has demonstrated that the read and write decoupled scheme is a good solution to the reduced SNM problem. A Dual Interlocked Storage Cell (DICE) based SRAM cell was proposed to eliminate the drawback of conventional DICE cell during read operation. This cell can mitigate the singleevent effects, improve the stability and also maintain the low-power characteristic of subthreshold SRAM, In order to make the proposed SRAM cell work under different power supply voltages from 0.3 V to 0.6 V, an improved replica sense scheme was applied to produce a reference control signal, with which the optimal read time could be achieved. In this thesis, a 2K~8 bits SRAM test chip was designed, simulated and fabricated in 90nm CMOS technology provided by ST Microelectronics. Simulation results suggest that the operating frequency at VDD = 0.3 V is up to 4.7 MHz with power dissipation 6.0 ÊW, while it is 45.5 MHz at VDD = 0.6 V dissipating 140 ÊW. However, the area occupied by a single cell is larger than that by conventional SRAM due to additional transistors used. The main contribution of this thesis project is that we proposed a new design that could simultaneously solve the ultra low-power and radiation-tolerance problem in large capacity memory design.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-06302010-204401 |
Date | 15 July 2010 |
Creators | Wang, Kuande |
Contributors | Eager, Derek, Wahid, Khan A., Ko, Seok-Bum, Chen, Li |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-06302010-204401/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0017 seconds