IEC 61850 standards are the global standard for communication in substations. It is gaining popularity in power substation automation and will dominate the future substation automation and protection system design. The standards provide new approaches for protection, control and metering function via communication. The secondary circuits in substation are simplified significantly and the massive hardwired cables are replaced by the high-speed process bus which transmit analogue and binary signals with Ethernet messages. However, the conformity of a device with the standards does not necessarily guarantee the interoperability with devices from different manufacturers. The use of devices compatible with IEC 61850 standards presents a challenge to many system integrators, especially due to lack of familiarity with features such as Generic Object Oriented Substation Event (GOOSE), reporting, Sampled Values and the need for system redundancy. To facilitate a smooth implementation, all the features and the data exchanges between devices need to be tested to ensure the system operates correctly. This project was carried out to study the protection performance of secondary schemes with IEC 61850 process bus architecture in substation. The tests were performed including current differential protection and distance protection on a transmission substation of the type used in the UK on the transmission network. The protection schemes were tested under IEC 61850 environment with multi-vendor IEDs like Alstom MiCOM IEDs, NARI IEDs with the OMICRON test set. More tests were carried out to verify the interoperability and the performance of time-critical messages were evaluated under different network architectures. The impact of the background traffic on these two messages was investigated and the response of the IEDs when the Sampled Values packets were lost or overwritten was recorded and provided to utility as a reference. This project also presented a technique to assess the performance of Merging Units from different manufacturers, when operating with Intelligent Electronic Devices (IEDs) performing a distance protection function. The performance of the process bus with parallel redundancy protocol is evaluated using a closed loop approach involving a Real Time Digital Simulator. The results indicate that protection using process bus communication is feasible, and meets grid code requirements when implemented with commercially available products. It was found that process bus operation is robust, even with network traffic conditions far beyond what would be experienced in an active substation.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:727858 |
Date | January 2016 |
Creators | Chen, Xi |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/performance-analysis-of-iec-61850-process-bus-and-interoperability-test-among-multivendor-system(7d12bda6-ab36-41f7-b392-5ff846521906).html |
Page generated in 0.0012 seconds