Op amps are among the most-used components in electronic design. Their performance is important and is often measured in terms of gain, bandwidth, power consumption, and chip area. Although BJT amplifiers can achieve high gains and bandwidths, they tend to consume a lot of power. CMOS amplifiers utilizing the strong inversion region alone use less power than BJT amplifiers, but generally have lower gains and bandwidths. When CMOS SPICE models were improved to accurately simulate all regions of inversion, researchers began to test the performance of amplifiers operating in the weak and moderate inversion regions. Previous work had dealt with exploring the parameters of composite cascode stages, including inversion coefficients. This thesis extends the work to include conventional cascode stages and presents an efficient method for exploring design parameters. A high-gain (137.7 dB), low power (4.347 µW) operational amplifier based on the conventional cascode stage is presented.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4610 |
Date | 13 June 2013 |
Creators | Cahill, Kurtis Daniel |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0017 seconds