Return to search

Étude expérimentale sur les gradients critiques à différentes échelles contrôlant la progression d'érosion de conduit

L'érosion régressive est l'un des mécanismes initiaux de l'érosion interne qui se produit dans les fondations des barrages en remblai et des digues. Une fois que la charge hydraulique de l'écoulement souterrain atteint des conditions critiques, des particules de la couche granulaire se détachent et sont transportées vers le pied aval avec l'écoulement sous le toit du matériau cohésif. Un conduit d'érosion étiré de l'amont vers l'aval se forme dans la fondation à travers ce processus, mettant en danger la stabilité du corps supérieur du barrage. Des études antérieures ont révélé que deux mécanismes différents sont responsables de la progression du conduit d'érosion, à savoir les érosions primaires et secondaires, c'est-à-dire l'érosion au niveau de la tête du conduit et du lit du conduit, respectivement. Plusieurs critères ont été développés sur la base de l'érosion secondaire, tels que la méthode de Sellmeijer pour déterminer le gradient global critique requis pour la progression du conduit d'érosion. Cependant, la plupart des investigations récentes se sont concentrées sur les conditions hydrauliques locales, car l'application de tels critères globaux sur le terrain pourrait être difficile en raison de l'hétérogénéité du terrain et de la stratification complexe du sol. Cette étude vise principalement à modéliser expérimentalement l'érosion régressive. Pour atteindre cet objectif, une cellule d'essai rectangulaire avec sortie de type trou est conçue pour contourner les inconvénients et les limitations des dispositifs existants. La configuration améliorée est composée de plusieurs rangées de capteurs de pression le long du chemin du conduit d'érosion, permettant de suivre librement les conditions hydrauliques le long des méandres du conduit. La compaction horizontale, l'application automatique de charge, le système d'acquisition de données de haute précision et fréquence et la procédure d'essai basée sur l'instrumentation sont d'autres améliorations ajoutées à la cellule. Les essais d'érosion avec la configuration améliorée sur différents sables fins uniformes montrent que le gradient global critique (i$\sf_{G\_cr}$) dans la configuration de sortie de type trou peut être expliqué par la conductivité hydraulique (k) et la taille de grain représentative (d$_{\mathsf70}$). La comparaison des données d'essai de la présente étude avec les données de la littérature démontre en outre que i$\sf_{G\_cr}$ corrèle parfaitement avec le facteur d'échelle (F$\sf_s$) qui intègre à la fois k et d$_{\mathsf70}$. En conséquence, le critère modifié de Sellmeijer est examiné pour son inclusion d'un nombre excessif de paramètres dans la prédiction du gradient global critique. La révision de la procédure de développement de la méthode de Sellmeijer révèle que le modèle est surajusté et inclut des paramètres intercorrélés. L'analyse statistique des données expérimentales utilisées pour modifier le critère de Sellmeijer montre qu'un modèle alternatif avec un nombre moindre de paramètres existe qui peut prédire le gradient global critique encore plus précisément. Le modèle proposé, développé sur la base des données expérimentales avec une sortie de type pente, est ensuite validé avec les données d'essai obtenues à partir de la configuration améliorée de cette étude. Il est démontré que le modèle est capable de prédire avec précision les deux types de configurations de sortie. Une analyse supplémentaire sur la capacité de prédiction du critère modifié de Sellmeijer rejette l'hypothèse précédente concernant sa surestimation 2 fois supérieure dans la prédiction du gradient pour les sorties de type trou. De plus, l'historique des charges et le gradient local sont étudiés dans les tests d'érosion sur les sables fins. Il est constaté que l'historique de charge hydraulique, c'est-à-dire l'application de charge en une seule étape ou en plusieurs étapes, n'a aucune influence sur le processus d'érosion. L'analyse des gradients locaux mesurés en amont du conduit d'érosion à l'aide des capteurs de la cellule reflète la relation mutuelle entre la progression du conduit d'érosion et le gradient local à la tête du conduit. Les résultats des essais indiquent la relation linéaire entre le gradient global critique et le gradient local. Une méthode géostatistique (krigeage) est utilisée pour étudier davantage l'influence de la distance entre les capteurs sur l'ampleur du gradient local mesuré. Il est démontré que le krigeage pourrait ne pas être un outil approprié pour l'interpolation de la charge hydraulique à proximité de la tête du conduit d'érosion. Une approche différente est utilisée, démontrant que le gradient local augmente de manière exponentielle avec la diminution de la distance entre les capteurs. / Backward erosion piping is one the initiating mechanisms of internal erosion that occurs in the foundations of embankment dams and dikes. Once the hydraulic load of the underground seepage reaches the critical conditions, particles of the granular layer are detached and transported towards the downstream toe with the seepage under the roof of the cohesive material. A stretched pipe from upstream to downstream forms in the foundation through this process which endangers the stability of the upper dam body. Previous studies found out that two different mechanisms are responsible for the progression of the pipe, namely primary and secondary erosions, i.e., erosion at the pipe tip and the pipe bed, respectively. Several criteria have been developed based on the secondary erosion such as Sellmeijer's method to determine the critical global gradient required for the pipe progression. Most recent investigations, however, focused on the local hydraulic conditions since application of such global criteria in the field could be challenging due to the field heterogeneity and complex soil stratification. This study aims primarily to model backward erosion experimentally. To achieve this end, a rectangular test cell with hole-type exit is designed which improves the drawbacks and limitations of the existing setups. The improved setup is composed of several rows of pressure sensors along the pipe pathway enabling to track freely meandering pipe's hydraulic conditions. Horizontal compaction, automatic load application, high accuracy and frequency data acquisition system and instrumentation-based testing procedure are other improvements added to the cell. The erosion tests with the improved setup on different fine uniform sands show that the critical global gradient (i$\sf_{G\_cr}$) in hole-type exit configuration can be explained by the hydraulic conductivity (k) and the representative grain size ($_{\mathsf70}$). Comparing the present study's test data with the data from the literature further demonstrates that i$\sf_{G\_cr}$ correlates perfectly with the scale factor (F$\sf_s$) which incorporates both k and $_{\mathsf70}$. Consequently, Sellmeijer's modified criterion is scrutinized for its inclusion of an excessive number of parameters in predicting the critical global gradient. Revisiting the development procedure of Sellmeijer's method reveals that the model is overfitted and it includes intercorrelated parameters. Statistical analysis on the experimental data used to modify Sellmeijer's criterion shows that an alternative model with a smaller number of parameters exists that can predict critical global gradient even more accurate. The proposed model developed based on the experimental data with slope-type exit is further validated with the test data obtained from this study's improved setup. It is shown that the model is capable of accurate prediction for both types of exit configurations. Additional analysis on the prediction capability of the Sellmeijer's modified criterion dismisses the prior hypothesis concerning its 2-time overestimation in prediction of the gradient for the hole-type exits. Furthermore, the loading history and local gradient are investigated in the erosion tests on the fine sands. It is found out that hydraulic loading history, i.e., single stage or multistage load application does not have any influence on the erosion process. The analysis of the local gradients measured upstream of the pipe using the cell sensors reflects the mutual relationship between the pipe progression and the local gradient at the pipe tip. The test results indicate the linear relationship between the critical global gradient and the local gradient. A geostatistical method (kriging) is used to further study the influence of the sensors distance on the magnitude of the measured local gradient. It is demonstrated that kriging might not be an appropriate tool to use for interpolation of the pressure head in the vicinity of the pipe tip. A different approach is used which demonstrates that local gradient increases exponentially with decreasing distance between the sensors.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/145045
Date07 June 2024
CreatorsRamezanifouladi, Sina
ContributorsCôté, Jean
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xvii, 136 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0034 seconds