Return to search

An Examination of Cytosine Deaminase plus 5-Fluorocytosine Suicide Gene Therapy In Combination With Cisplatin Chemotherapy For the Treatment Of Cancer / Suicide Gene Therapy of Cancer

Cancer is a disease characterized by complexity and unpredictability. Consequently, its treatment is difficult and all too often unsuccessful. Almost all cancers are treated with some combination of the traditional anti-cancer armamentarium: surgery, chemotherapy, and radiotherapy. Recently, however, gene therapy has emerged as a promising addition to this existing repertoire. Its application as a single agent, or in combination with other anti-cancer treatments is proving successful in both pre-clinical and clinical settings. In this work I have investigated the combination of a conventional chemotherapy drug, cisplatin, with a type of cancer gene therapy known as cytosine deaminase + 5-fluorocytosine suicide gene therapy. Suicide gene therapy is the intracellular conversion of non-toxic prodrug to its active form by a metabolic enzyme of non-mammalian origin. There are many established enzyme/prodrug combinations, but here the bacterial enzyme cytosine dearninase (CDA) was used to convert inert 5-fluorocytosine (5FC) to highly toxic 5-fluorouracil (5FU). Of the various vector systems for therapeutic gene delivery, adenoviral (Ad) vectors have proven particularly suitable for application to cancer. This work used a first generation adenovirus type 5 vector expressing the enzyme cytosine deaminase (AdCDA) cloned from E. coli. The combination of AdCDA/5FC with cisplatin was chosen because the combination of 5FU and cisplatin, both of which are used extensively in cancer treatment, has proven effective clinically and demonstrates synergy in vitro. This combination was evaluated in murine mammary carcinoma MTIA2 cells, human colorectal carcinoma HT29 cells, HT29pl4 cells, the photofrin resistant sub-line of HT29 cells, and murine melanoma Bl6/FIO cells. The classical clonogenic assay was used to evaluate this combination treatment since it provides an accurate indication of the effectiveness a cancer treatment will have in vivo. AdCDA infected MTIA2, HT29, and HT29pl4 cell lines exhibited a dose response to increasing concentrations of SFC that was significantly different from control vector infected cells. Similarly, uninfected cells demonstrated a dose response to increasing concentrations of cisplatin. The effect of the combination on clonogenic survival, administered in the sequence of a 48 h exposure to SFC followed by 1 h exposure to cisplatin, was greater than additive compared to the effect of the two treatments alone.
F10 cells exhibited a dose response to increasing concentrations of cisplatin. However, it could not be shown reproducibly that AdCDA infected FlO cells exhibited a dose response to SFC that differed significantly from control vector infected cells. Work with the FlO cells was inconclusive regarding the combination treatment, but it rendered information regarding the sensitivity of these cells to what is hypothesized to be an unidentified component present in some preparations of 5FC.
Evaluation of this treatment in vivo, using both murine and human tumor cell lines, will further define the potential of AdCDA/5FC + cisplatin as a clinically relevant cancer treatment. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24411
Date08 1900
CreatorsNethercot, Victoria
ContributorsRainbow, A, Gauldie, J, Biology
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds