Return to search

Electrochemical investigations of various sulphides, xanthates systems and sulphides, iron, xanthates systems

An electrochemical study was carried out on various electrodes
of sphalerite, pyrite, pyrrhotite, chalcopyrite and galena in deoxygenated and air-saturated solutions at different concentrations of potassium ethyl xanthate (KEtX), i.e. 0 M, 10⁻⁵ M, 3 x 10⁻⁵M, 10⁻⁴ M, 3 x 10⁻⁴ M, 10⁻⁴M, 10⁻³ M and pH (1 to 12) at 25°C ± 1°C. The effect of galvanic contact between various sulphides and metallic iron on various electrochemical characteristics of the galvanic couple was also investigated.
Following a pseudo Nernst relationship, the rest potentials of various electrode systems became more negative with the higher concentration
of KEtX. The electrochemical series of the sulphide minerals
investigated, in potassium ethyl xanthate solution, in the order of their nobility, were sphalerite, pyrite, pyrrhotite, chalcopyrite and galena. All sulphide-xanthate-air systems displayed more noble rest potentials than the redox potential of potassium ethyl xanthate at natural pH; however, the rest potentials of most sulphides except for sphalerite became more negative than the redox potential of potassium
ethyl xanthate at a pH of 9. Solution purging with air caused the rest potentials of all sulphides investigated to shift in the noble direction because of the oxygen reduction.

Various sulphide-iron galvanic couples acquired mixed potentials which lay between the rest potentials of sulphides and iron. The exact value of the mixed potential of the particular electrode system was varied depending on the relative surface area of the two electrodes in galvanic contact.
The experimental potential-pH diagrams were constructed for the minerals and metallic iron in the solutions of 0 M and 10~5 M of potassium ethyl xanthate. / Applied Science, Faculty of / Mining Engineering, Keevil Institute of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/19852
Date January 1975
CreatorsMoon, Kwang Soon
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0016 seconds