Les protéines à centre Fe-S sont impliquées dans de nombreux processus cellulaires. In vivo, la formation des centres Fe-S est réalisée par des machineries multi-protéiques dont ISC et SUF, conservées chez les eucaryotes et les procaryotes. D’autres composants participent à la formation des centres Fe-S chez les eucaryotes, comme la frataxine (FXN). La FXN est une protéine présente chez l’homme, les plantes, la levure ou encore les bactéries à Gram négatif. Chez les eucaryotes, l’absence de FXN conduit à des phénotypes drastiques comme une accumulation de fer dans la mitochondrie, une diminution drastique de l’activité d’enzymes à centre Fe-S ou encore des dommages oxydatifs. Chez l’homme, un déficit en FXN est responsable d’une maladie neurodégénérative, l’ataxie de Friedreich. A la différence des eucaryotes, chez les procaryotes comme Escherichia coli, l’absence de CyaY, homologue bactérien de la FXN, ne conduit à aucun des phénotypes évoqués ci-dessus.Durant ma thèse, je me suis intéressée au rôle de CyaY chez E. coli. J’ai montré que, in vivo, CyaY favorise la formation des centres Fe-S via la machinerie ISC. Un lien génétique entre CyaY et IscX a également pu être établi, montrant que ces deux protéines participent à la formation des centres Fe-S in vivo. Je me suis ensuite intéressée aux bases moléculaires pouvant expliquer la différence entre les phénotypes liés à l’absence de FXN chez les eucaryotes et les procaryotes. J’ai montré que le résidu 108 de IscU joue un rôle clé pour la dépendance de CyaY. Enfin, pour mieux comprendre le rôle de CyaY chez E. coli, j’ai réalisé une approche globale en caractérisant le transcriptome du mutant ∆cyaY. / Fe-S cluster containing proteins are involved in many cellular processes such as respiration, DNA repair or gene regulation. In vivo, Fe-S cluster biogenesis is catalysed by specific protein machineries, ISC and SUF, conserved in both eukaryotes and prokaryotes. Frataxin (FXN) is a small protein found in humans, plants, yeast and Gram negative bacteria. In eukaryotes, a defect in FXN leads to drastic phenotypes such as mitochondrial iron accumulation, drastic decrease of Fe-S cluster protein activity, sensitivity to oxidants. In humans, FXN deficiency is responsible for the neurodegenerative disease, Friedreich’s ataxia. In prokaryotes like E. coli, a defect in CyaY, the bacterial FXN homolog, does not lead to significant phenotypes compared to the wild-type strain. During my thesis, I investigated the role of the bacterial FXN CyaY in E. coli. I showed that, in vivo, CyaY assisted the ISC-catalyzed Fe-S cluster biogenesis. A genetic link was also observed between cyaY and iscX, demonstrating that these proteins participate in Fe-S cluster biogenesis. In a second part, I investigated the differences between the impact of the eukaryotic versus prokaryotic FXN. I showed that the IscU 108th residue is crucial for the CyaY-dependency. Finally, I used a transcriptomic approach to test whether CyaY has a global role in E. coli.
Identifer | oai:union.ndltd.org:theses.fr/2015AIXM4083 |
Date | 01 December 2015 |
Creators | Roche, Béatrice |
Contributors | Aix-Marseille, Barras, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds