Dans cette thèse, nous étudions la diffusion cohérente de la lumière se propageant dans un milieu désordonné. Nous nous intéressons à des phénomènes tels que la super- et sousradiance et la localisation d’Anderson qui sont liées aux interférences et au désordre spatial. Cependant, la différence fondamentale entre la sousradiance et la localisation d'Anderson doit encore être clarifiée. Cette thèse donne de nouvelles idées pour la compréhension de ces phénomènes et nous présentons une nouvelle méthode pour observer la localisation d'Anderson. On développe un modèle à champ moyen qui ne contient pas de désordre, et nous montrons que super- et sousradiance ne nécessitent pas de désordre contrairement à la localisation d’Anderson. Dans ce travail théorique, le couplage entre la lumière et les atomes est réduit à une matrice de couplage entre les atomes en calculant la trace sur les degrés de liberté de la lumière, ce qui nous amène à un problème linéaire pour les dipôles atomiques. L'étude des valeurs propres et des modes propres de cette matrice permet de déterminer des modes super- et sousradiant, et de sonder la transition de phase de localisation avec une scaling analysis. De plus, le lien avec l'expérience est fait en montrant que les fluctuations de l’intensité augmentent à travers la transition de localisation. Le système est étudié en régime stationnaire, quand le milieu est continûment chargé par un laser et que celui-ci atteint l’équilibre, et en dynamique, quand le laser est éteint et que le milieu se décharge de l’énergie stockée. Enfin, nous présentons un travail préliminaire qui montre que le désordre diagonal peut être une bonne stratégie pour atteindre la localisation d’Anderson. / In this thesis, we investigate the coherent scattering of light propagating in a random medium. We are interested in phenomena like the super- and subradiance and Anderson localization that are related to waves interferences and spatial disorder. However, the fundamental difference between subradiance and Anderson localization still needs to be clarified. This thesis gives new elements for the understanding of these phenomena and we present a new method to observe Anderson localization. A mean-field model that does not contain disorder is developed, and we show that super- and subradiance do not require disorder whereas Anderson localization does. In this theoretical work, the coupling between the light and many atoms is reduced to a coupling matrix between the atoms by tracing over the degrees of freedom of the light, which results in a linear problem for the atomic dipoles. The study of the eigenvalues and eigenmodes of this matrix then allows to determine the super- and subradiant modes, and to probe the Anderson localization phase transition with a scaling analysis. Furthermore, the link to the experiment is realized by showing that the intensity fluctuations present an increase at the localization transition. The system is studied in the steady-state regime when the medium is continuously charged by a laser until reaches a stationary regime, and the decay dynamics, when the laser is switched off, so the cloud releases the energy stored. Finally, we present a preliminary work that shows that the diagonal disorder might be a good strategy to reach Anderson localization.
Identifer | oai:union.ndltd.org:theses.fr/2019AZUR4024 |
Date | 24 January 2019 |
Creators | Cottier, Florent |
Contributors | Côte d'Azur, Universidade de São Paulo (Brésil), Kaiser, Robin, Bachelard, Romain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds