Return to search

Rekonstrukce nekvalitních snímků obličejů / Facial image restoration

In this thesis, I tackle the problem of facial image super-resolution using convolutional neural networks with focus on preserving identity. I propose a method consisting of DPNet architecture and training algorithm based on state-of-the-art super-resolution solutions. The model of DPNet architecture is trained on Flickr-Faces-HQ dataset, where I achieve SSIM value 0.856 while expanding the image to four times the size. Residual channel attention network, which is one of the best and latest architectures, achieves SSIM value 0.858. While training models using adversarial loss, I encountered problems with artifacts. I experiment with various methods trying to remove appearing artefacts, which weren't successful so far. To compare quality assessment with human perception, I acquired image sequences sorted by percieved quality. Results show, that quality of proposed neural network trained using absolute loss approaches state-of-the-art methods.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:417271
Date January 2020
CreatorsBako, Matúš
ContributorsHerout, Adam, Hradiš, Michal
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageSlovak
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0011 seconds