This thesis explores some new applications in power electronics for supercapacitors. This involves the design and development of dc-dc converters to interface the supercapacitor banks with the rest of the power electronic system. Two applications for supercapacitors are proposed and analyzed. The first application is aimed at high power applications such as motor drives. The proposed approach compensates the effect of voltage sags in the dc link of typical adjustable speed drives, thus reducing speed fluctuations in the motor and eliminating the possibility of nuisance tripping on the drive control board. The second approach presented in this thesis explores the use of supercapacitors to extend run-time for mobile devices such as laptop computers and hand held devices. Three possible approaches are explored: a) Supercapacitors connected directly across the battery; b) Battery-inductor-supercapacitor connection; and c) Supercapacitor, and battery connected via a DC-DC converter. Analytical models, simulation and experimental results on a typical laptop computer are presented.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/26 |
Date | 30 September 2004 |
Creators | Palma Fanjul, Leonardo Manuel |
Contributors | Enjeti, Prasad |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 5842092 bytes, 122258 bytes, electronic, application/pdf, text/plain, born digital |
Page generated in 0.0054 seconds