The complexes of oxidative phosphorylation (OXPHOS) are situated in the inner mitochondrial membrane in higher structural and functional complexes, so-called supercomplexes, which facilitates substrate channeling. ATP synthase is also able to organize in higher structures. In mammalian mitochondria, ATP synthase is usually present in a dimeric form. There is evidence of its trimerization and even tetramerization. Furthermore, it seems that ATP synthase catalyzing the phosphorylation of ADP to ATP, adenine nucleotide translocator (ANT) ensuring the exchange of ADP for newly synthesized ATP across the inner mitochondrial membrane and phosphate carrier (PiC) allowing the import of inorganic phosphate (Pi) into the matrix of mitochondria are assembled in a supercomplex called ATP synthasome. This association among the components of phosphorylative apparatus seems to increase the efficiency of processes leading to the ATP synthesis. First, we studied amounts of the components of phosphorylative apparatus in connection with various ATP synthase contents among mitochondria isolated from nine rat tissues. Mitochondrial proteins were separated by denaturing electrophoresis (SDS-PAGE) and their content was analyzed using specific antibodies. In agreement with our expectations, the highest content of...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:306645 |
Date | January 2012 |
Creators | Mikulová, Tereza |
Contributors | Houštěk, Josef, Kalous, Martin |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds