The complexes of the oxidative phosphorylation (OXPHOS) system in the inner mitochondrial membrane are organised into structural and functional super-assemblies, so-called supercomplexes. This type of organisation enables substrate channelling and hence improves the overall OXPHOS efficiency. ATP synthase associates into dimers and higher oligomers. Within the supercomplex of ATP synthasome, it interacts with ADP/ATP translocase (ANT), which exchanges synthesised ATP for cytosolic ADP, and inorganic phosphate carrier (PiC), which imports phosphate into the mitochondrial matrix. The existence of this supercomplex is generally accepted. Experimental evidence is however still lacking. In this thesis, structural interactions between ATP synthase, ANT and PiC were studied in detail. In addition, the interdependence of their expression was examined either under physiological conditions in rat tissues or using model cell lines with ATP synthase deficiencies of different origin. Specifically, they included mutations in the nuclear genes ATP5E and TMEM70 that code for subunit ε and the ancillary factor of ATP synthase biogenesis TMEM70, respectively, and a microdeletion at the interface of genes MT-ATP6 and MT-COX3 that impairs the mitochondrial translation of both subunit a of ATP synthase and subunit Cox3...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:347449 |
Date | January 2016 |
Creators | Nůsková, Hana |
Contributors | Houštěk, Josef, Kolarov, Jordan, Kuda, Ondřej, Panicucci Zíková, Alena |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds