Return to search

Optimizing carbon/carbon supercapacitors in aqueous and organic electrolytes / Optimisation de supercondensateurs carbone/carbone dans des électrolytes aqueux et organiques

L’enjeu majeur du développement des supercondensateurs reste focalisé sur l’augmentation de la densité d’énergie de ces systèmes tout en adoptant une démarche la plus respectueuse possible de l’environnement. Afin de satisfaire cet objectif, deux stratégies d’optimisation de supercondensateurs carbone/carbone ont été envisagées en fonction du milieu électrolytique utilisé: i) dans le cas du milieu aqueux, des solutions de sulfates alcalins neutres ont été considérées afin d’étendre la tension de fonctionnement du système; ii) dans le cas du milieu organique, une méthode douce d'activation a été mise en oeuvre afin d’obtenir des carbones microporeux avec une taille moyenne de pores adaptée à la taille des ions de l’électrolyte. L’utilisation d’électrolytes aqueux à base de sulfates alcalins dans des supercondensateurs carbone/carbone symétriques a permis d’étendre la fenêtre de tension jusqu’à 1,9 V ; cette dernière a même pu être étendue à 2,0 V par ajustement des masses d’électrodes. Enfin, des électrodes commerciales enduites ont été utilisées dans des cellules type « coffee-bag » offrant une excellente stabilité pendant 10,000 cycles à 2,1 V. En milieu organique, des carbones nanoporeux denses avec des pores adaptés à la taille des ions de l'électrolyte organique Et4NBF4/acetonitrile ont été obtenus par oxydation à haute pression et basse température (environ 200°C) d’un carbone non poreux. Une étape suivante de traitement thermique a ensuite permis d’éliminer les groupements fonctionnels de surface et ainsi d’améliorer l’accessibilité de la porosité. En raison de la faible oxydation, la densité des électrodes est remarquablement élevée permettant d’atteindre des valeurs élevées de capacité volumique. / The objective of this work is to improve the energy density of carbon/carbon supercapacitors. For achieving this objective, two different strategies were followed depending on the electrolyte used: i) in aqueous electrolytes, our efforts were focused on extending the operating cell voltage by using neutral alkali sulfate solutions; ii) in organic electrolyte, the target was to improve the volumetric capacitance by setting a mild activation method able to produce a porous carbon with average pore size matching the ion size, while not enlarging the pores upon porosity development. A practical cell voltage of 1.8 V has been demonstrated by implementing aqueous alkali sulfates in symmetric carbon/carbon capacitors. It has been shown that the voltage is limited by a partial destructive electro-oxidation of the positive electrode. Such irreversible electro-oxidation could be mitigated by mild chemical oxidation of the active carbon material with hydrogen peroxide; consequently, the voltage could be further expanded up to 1.9 V. Even 2.0 V could be attained after mass balancing the electrodes in order to allow them to operate in their stability window. Finally, pouch-cells with carbon coating on stainless steel current collector were realized by using 2 mol L-1 Li2SO4 as electrolyte. An exceptional cycling stability at cell voltages up to 2.1 V was obtained during 10,000 cycles. Hence, the use of alkali sulfate electrolytes is a cost-effective alternative to organic electrolytes for producing environment friendly and safe carbon/carbon supercapacitors. Dense nanoporous carbons with pores fitting the dimension of ions of the Et4NBF4/acetonitrile organic electrolyte were obtained by high pressure oxidation of non-porous carbon at low temperature, followed by a thermal desorption to remove the surface groups and unblock pore entrances. The activation mechanism consisted in drilling the narrow pores existing initially in the char. Due to the low burn-off, the density of the electrodes was remarkably high allowing high volumetric capacitance values to be reached. This novel production method associates the advantages of environment friendly, cost-effective, high yield and low energy consumption characteristics.

Identiferoai:union.ndltd.org:theses.fr/2013ORLE2011
Date08 July 2013
CreatorsGao, Qiang
ContributorsOrléans, Béguin, François
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds