Return to search

An investigation of the effect of co-solvents on the hydrothermal liquefaction of microalgae biomass

The study introduces and demonstrates the viability of the continuous flow reactor (CFR) system for the production of bio-crude oil (BCO) from wet microalgae. Preliminary experiments conducted in the CFR system in hot compressed water (HCW) were successful in converting wet microalgae into liquid BCO. However, the synthesis and aggregation of high boiling point (HBP) components of BCO and the accumulation of char in the tubular piping of CFR system were identified as the limiting factor to the viability of the system. The aggregation of HBP components and the accumulation of char result to system blockage which prevents the continuous flow of the liquefaction product mixture in the CFR system. Inhibiting the reactions leading to the formation of HBP components and char will improve the performance of the CFR system. Therefore, the study seeks to incorporate co-solvents in the liquefaction reaction media in an attempt to inhibit or minimize the prevalence of HBP components of BCO. As such, different co-solvents were screened for their influence on improving the quality of BCO with respect to its boiling point profile (BPP), initial and final boiling point, as well as the amount of char recovered from each experiment. Only one co-solvent was chosen for further exploration in the CFR system. Batch liquefaction reactor’s (BLR) made up of stainless steel were used to carry out the co-solvent screening experiments. These experiments were carried out at a constant temperature (280 °C), pressure (75 bar), and co-solvent concentration (10 wt.%), at varying residence times. Solvent extraction with dichloromethane (DCM) was performed on the liquefaction product mixture to separate the products, viz. BCO, char and water soluble components. The extracted BCO was analysed through simulated distillation (SimDis) to obtain the BPP. The BPP properties of the BCO samples, from different liquefaction media, and the amount of char recovered were highly influenced by the addition of a co-solvent. The final boiling point (FBP) of tetralin, heptane, and n-octanol BCO products were significantly reduced to below 500 °C for all tested residence times except at 20 minutes. The residence time also proved to be influential in the processing of wet microalgae. n-Octanol was selected as the optimal performing co-solvent and was used for the continuous liquefaction of wet microalgae in the CFR system. The CFR system was modified by adding a co-solvent feed line into the continuous system since n-octanol was insoluble in water. The n-octanol pump was set at different flow rates, 0.2, 0.3, and 0.4 g/min, which resulted in a concentration of about 10 wt.% in the reactor feed. The concentration of n-octanol had a significant influence on the BPP of BCO components. The FBP’s were reduced with an increase in n-octanol concentration. The initial boiling point (IBP) of n-octanol BCO was increased to just above 100 °C which was required for the stability of the BCO product. The components of BCO were identified by GCMS. n-Octanol also proved to affect the composition of the BCO with respect to its components. HCW BCO components were significantly different from those identified from n-octanol BCO. A second co-solvent (tetralin) was used to prove whether the difference on the components of BCO was affected by n-octanol. The results proved that indeed the addition of different solvents in liquefaction reaction media favours the formation of different components. The amount of char formed was also reduced when using a co-solvent. A decrease in the oxygen/nitrogen compounds was also observed in the presence of a co-solvent, thus improving BCO properties.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:29731
Date January 2015
CreatorsNongauza, Sinethemba Aubrey
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, DPhil
Formatx, 120 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0082 seconds