Esta dissertação trata do problema de Dirichlet para a equação das superfícies minimas em domínios não limitados do plano. Estabelecemos um teorema, devido a Collin-Krust, que fornece uma estimativa para a diferença de duas soluções distintas em uma vizinhança do inftnito. Estudamos também a questão da existência e da unicidade de soluções em conjuntos convexos não limitados do plano. Entre tais conjuntos estão a faixa e o semi-plano. No apêndice apresentamos um exemplo de uma situação onde o problema de Dirichlet para a equação das superfícies mfnimas não possui solução. / This work deals with the Dirichlet problem for the minimal surface equation in non-lirnited domains of the plane. A theorem based on Collin-Krust was stated. It provides an estimate for the difference between two distinct solutions in an inímite neighborhood. The solution unicity and existence in non-limited convex domains of the plane is also studied. Among these domains are the band and the half-plane. In the appendix an example where the DiricWet problem for the minimal surface equation does not have a solution is presented.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/127338 |
Date | January 1994 |
Creators | Bellincanta, Leandro Sebben |
Contributors | Ripoll, Jaime Bruck |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds