Fabrication of SWCNT-PMMA and Activated Charcoal- PMMA composites was carried out by the compression moulding technique. Then Mechanical and Electrical properties of the composites were investigated. The morphological studies of composites showed a) good dispersion of fillers and b) good interaction between fillers and matrix. Electrical conductivity of SWCNT-PMMA composites was increased by 9 orders of magnitude (at 0.8 % volume fraction of SWCNT) and that of AC-PMMA composites increased by 16 orders of magnitude (at 17 % volume fraction of AC). The percolation threshold of both composites turned out to be lower compared to the theoretical values. A significant improvement in mechanical properties was obtained ??? particularly in AC-PMMA composites which showed a 400 % improvement in Vickers microhardness ??? raising the polymer matrix abrasion property literally to that of Aluminium alloys (Dobrazanski et al 2006). In conclusion, it is to be noted that Activated Charcoal - PMMA composites have a great potential for cost effective conducting polymer composite production by the use of cheap filler: In addition, the compression moulding technique shows good potential for cost effective fabricating technique for amorphous polymers with high electrical and mechanical properties.
Identifer | oai:union.ndltd.org:ADTP/258499 |
Date | January 2009 |
Creators | Mada, Mykanth Reddy, Materials Science & Engineering, Faculty of Science, UNSW |
Publisher | Awarded by:University of New South Wales. Materials Science & Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Mada Mykanth Reddy., http://unsworks.unsw.edu.au/copyright |
Page generated in 0.002 seconds