This thesis studies derived equivalences between total spaces of vector bundles and dg-quivers. A dg-quiver is a graded quiver whose path algebra is a dg-algebra. A quiver with superpotential is a dg-quiver whose differential is determined by a "function" Φ. It is known that the bounded derived category of representations of quivers with superpotential with finite dimensional cohomology is a Calabi- Yau triangulated category. Hence quivers with superpotential can be viewed as noncommutative Calabi- Yau manifolds. One might then ask if there are derived equivalences between Calabi-Yau manifolds and quivers with superpotential. In this thesis, we answer this question and, generalizing Bridgeland [15], give a recipe on how to construct such derived equivalences.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:658419 |
Date | January 2014 |
Creators | Lam, Yan Ting |
Contributors | Joyce, Dominic |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 |
Page generated in 0.0018 seconds