Return to search

Generalized self-intersection local time for a superprocess over a stochastic flow

x, 110 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation examines the existence of the self-intersection local time for a superprocess over a stochastic flow in dimensions d ≤ 3, which through constructive methods, gives a Tanaka like representation. The superprocess over a stochastic flow is a superprocess with dependent spatial motion, and thus Dynkin's proof of existence, which requires multiplicity of the log-Laplace functional, no longer applies. Skoulakis and Adler's method of calculating moments is extended to higher moments, from which existence follows. / Committee in charge: Hao Wang, Co-Chairperson, Mathematics;
David Levin, Co-Chairperson, Mathematics;
Christopher Sinclair, Member, Mathematics;
Huaxin Lin, Member, Mathematics;
Van Kolpin, Outside Member, Economics

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/10870
Date06 1900
CreatorsHeuser, Aaron, 1978-
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationUniversity of Oregon theses, Dept. of Mathematics, Ph. D., 2010;

Page generated in 0.0018 seconds