CD4 co-receptor of main T cell receptor (TCR) is essential for proper development of T lymphocytes and their function in adaptive immune responses. It is believed that CD4 stabilizes the interaction of TCR with antigenic ligand, peptide-MHC, and thereby improves T cell-dependent responses during immune reaction. CD4 is transmembrane glycoprotein with a number of structural motifs in its intracellular domain which do not dramatically affect its sorting to the plasma membrane but can influence its local organization at nanoscale. CD4 was shown to transiently accumulate in the immunological synapse formed between T cell and antigen-presenting cell. Such accumulation is rapidly followed by its internalization and/or delocalization outside the synapse. This is in contrast with TCR which accumulates strongly in the immunological synapse and is later found enriched in the central area of this structure. It is therefore unclear how TCR and its CD4 co-receptor function together when binding to their common ligand during the initiation of signaling in T cells. We aim to study localization of CD4 at nanoscale using advanced fluorescence microscopy techniques achieving significant improvements in resolution. In this work, CD4 and its mutant variants, potentially causing its different localization at the...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:322122 |
Date | January 2013 |
Creators | Glatzová, Daniela |
Contributors | Cebecauer, Marek, Drbal, Karel |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0031 seconds