Return to search

Zero-energy states in supersymmetric matrix models

The work of this Ph.D. thesis in mathematics concerns the problem of determining existence, uniqueness, and structure of zero-energy states in supersymmetric matrix models, which arise from a quantum mechanical description of the physics of relativistic membranes, reduced Yang-Mills gauge theory, and of nonperturbative features of string theory, respectively M-theory. Several new approaches to this problem are introduced and considered in the course of seven scientific papers, including: construction by recursive methods (Papers A and D), deformations and alternative models (Papers B and C), averaging with respect to symmetries (Paper E), and weighted supersymmetry and index theory (Papers F and G). The mathematical tools used and developed for these approaches include Clifford algebras and associated representation theory, structure of supersymmetric quantum mechanics, as well as spectral theory of (matrix-) Schrödinger operators. / QC20100629

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-12846
Date January 2010
CreatorsLundholm, Douglas
PublisherKTH, Matematik (Avd.), Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-MAT. MA, 1401-2278 ; 10:06

Page generated in 0.0025 seconds