Return to search

Capacity planning under demand and manufacturing uncertainty for biologics

Thesis: M. Eng. in Supply Chain Management, Massachusetts Institute of Technology, Supply Chain Management Program, 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references (page 58). / Due to the long lead times and complexity in drug development and approval processes, pharmaceutical companies use long range planning to plan their production for the next 10 years. Capacity planning is largely driven by the long-term demand and its forecast uncertainty. The impact of uncertainties at manufacturing level, such as factory productivity and production success rate, are not entirely taken into account since only the average values of each manufacturing parameter are used. Can we better allocate production among manufacturing facilities when both demand and manufacturing uncertainties are considered? In this thesis a stochastic optimization approach is followed to minimize the deviation from target capacity limit under different manufacturing and demand scenarios. The mixed integer linear model incorporates the impact of demand and manufacturing variation on production allocation among manufacturing facilities through Monte Carlo generated scenarios. The thesis model is designed in a way that can be used as a decision tool to perform robust capacity planning at the strategic level. / by Sifo Luo. / M. Eng. in Supply Chain Management

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/112865
Date January 2017
CreatorsLuo, Sifo
ContributorsOzgu Turgut., Massachusetts Institute of Technology. Supply Chain Management Program., Massachusetts Institute of Technology. Supply Chain Management Program.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format63 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0021 seconds