The objective of the research described in this dissertation is to improve the travel-time prediction process using machine learning methods for the Advanced Traffic In-formation Systems (ATIS). Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic congestion. The increased demand of the traffic flow has motivated the need for development of improved applications and frameworks, which could alleviate the problems arising due to traffic flow, without the need of addition to the roadway infrastructure.
In this thesis, the basic building blocks of the travel-time prediction models are discussed, with a review of the significant prior art. The problem of travel-time prediction was addressed by different perspectives in the past. Mainly the data-driven approach and the traffic flow modeling approach are the two main paths adopted viz. a viz. travel-time prediction from the methodology perspective. This dissertation, works towards the im-provement of the data-driven method.
The data-driven model, presented in this dissertation, for the travel-time predic-tion on freeways was based on wavelet packet decomposition and support vector regres-sion (WPSVR), which uses the multi-resolution and equivalent frequency distribution ability of the wavelet transform to train the support vector machines. The results are compared against the classical support vector regression (SVR) method. Our results indi-cate that the wavelet reconstructed coefficients when used as an input to the support vec-tor machine for regression (WPSVR) give better performance (with selected wavelets on-ly), when compared against the support vector regression (without wavelet decomposi-tion).
The data used in the model is downloaded from California Department of Trans-portation (Caltrans) of District 12 with a detector density of 2.73, experiencing daily peak hours except most weekends. The data was stored for a period of 214 days accumulated over 5 minute intervals over a distance of 9.13 miles. The results indicate an improvement in accuracy when compared against the classical SVR method.
The basic criteria for selection of wavelet basis for preprocessing the inputs of support vector machines are also explored to filter the set of wavelet families for the WDSVR model. Finally, a configuration of travel-time prediction on freeways is present-ed with interchangeable prediction methods along with the details of the Matlab applica-tion used to implement the WPSVR algorithm.
The initial results are computed over the set of 42 wavelets. To reduce the compu-tational cost involved in transforming the travel-time data into the set of wavelet packets using all possible mother wavelets available, a methodology of filtering the wavelets is devised, which measures the cross-correlation and redundancy properties of consecutive wavelet transformed values of same frequency band.
An alternate configuration of travel-time prediction on freeways using the con-cepts of cloud computation is also presented, which has the ability to interchange the pre-diction modules with an alternate method using the same time-series data.
Finally, a graphical user interface is described to connect the Matlab environment with the Caltrans data server for online travel-time prediction using both SVR and WPSVR modules and display the errors and plots of predicted values for both methods. The GUI also has the ability to compute forecast of custom travel-time data in the offline mode.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50408 |
Date | 13 January 2014 |
Creators | Yusuf, Adeel |
Contributors | Madisetti, Vijay Krishna |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0016 seconds