A diesel particulate filter (DPF) is designed to physically remove diesel particulate matter or soot from the exhaust gas of a diesel engine. Frequently replacing DPF is a waste of resource and waiting for full utilization is risky and very costly, so, what is the optimal time/milage to change DPF? Answering this question is very difficult without knowing when the DPF is changed in a vehicle. We are finding the answer with supervised machine learning algorithms for detecting anomalies in vehicles off-board sensor data (operational data of vehicles). Filter change is considered an anomaly because it is rare as compared to normal data. Non-sequential machine learning algorithms for anomaly detection like oneclass support vector machine (OC-SVM), k-nearest neighbor (K-NN), and random forest (RF) are applied for the first time on DPF dataset. The dataset is unbalanced, and accuracy is found misleading as a performance measure for the algorithms. Precision, recall, and F1-score are found good measure for the performance of the machine learning algorithms when the data is unbalanced. RF gave highest F1-score of 0.55 than K-NN (0.52) and OCSVM (0.51). It means that RF perform better than K-NN and OC-SVM but after further investigation it is concluded that the results are not satisfactory. However, a sequential approach should have been tried which could yield better result.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:du-28962 |
Date | January 2018 |
Creators | Wahab, Nor-Ul |
Publisher | Högskolan Dalarna, Mikrodataanalys |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds