<p>The subject of this thesis is the application of Support Vector Machines on two totally different applications, facial expressions recognition and remote sensing.</p><p>The basic idea of kernel algorithms is to transpose input data in a higher dimensional space, the feature space, in which linear operations on the data can be processed more easily. These operations in the feature space can be expressed in terms of input data thanks to the kernel functions. Support Vector Machines is a classifier using this kernel method by computing, in the feature space and on basis of examples of the different classes, hyperplanes that separate the classes. The hyperplanes in the feature space correspond to non linear surfaces in the input space.</p><p>Concerning facial expressions, the aim is to train and test a classifier able to recognise, on basis of some pictures of faces, which emotion (among these six ones: anger, disgust, fear, joy, sad, and surprise) that is expressed by the person in the picture. In this application, each picture has to be seen has a point in an N-dimensional space where N is the number of pixels in the image.</p><p>The second application is the detection of camouflage nets hidden in vegetation using a hyperspectral image taken by an aircraft. In this case the classification is computed for each pixel, represented by a vector whose elements are the different frequency bands of this pixel.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-2938 |
Date | January 2005 |
Creators | Jottrand, Matthieu |
Publisher | Linköping University, Department of Electrical Engineering, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0017 seconds