Air- and spaceborne radars play an important role for civilian and military use. There are numerous applications such as earth observations, surveillance and others. High performance clutter suppression is a crucial part of many of these radar systems. Space time adaptive processing(STAP)has become a topic of interest for clutter suppression applications. Although for most moving target indication(MTI) radars other applications are used for clutter suppression. This master thesis analyses STAP on two antenna configuration for airborne radar applications. The first configuration is based on auxiliary antennas, the second configuration is based on a multitapering method called discrete prolate spheroidal sequences(DPSS). This theses shows that both antenna configurations are valid choices for STAP applications. Although the later configuration, DPSS, has a higher clutter suppression performance in general. However, there are fundamental limitations with the DPSS configuration. These limitations are shortly discussedin this theses but more work should be done before implementing the DPSS configuration
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-87470 |
Date | January 2021 |
Creators | Björk, Sabina |
Publisher | Luleå tekniska universitet, Institutionen för system- och rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds