This Master’s dissertation focuses on engineering artificial nanostructures, namely, arrays of metamolecules on a substrate (metasurfaces), with the goal to achieve the desired linear and nonlinear optical responses. Specifically,
a simple analytical model capable of predicting optical nonlinearity of an
individual metamolecule has been developed. The model allows one to estimate the nonlinear optical response (linear polarizability and nonlinear hyperpolarizabilities) of a metamolecule based on the knowledge of its shape,
dimensions, and material. In addition, a new experimental approach to measure hyperpolarizability has also been investigated. As another research effort, a 2D plasmonic metasurface with the collective behaviour of the metamolecules known as hybrid plasmonic-Fabry-Perot cavity and surface lattice resonances was designed, fabricated and optically characterized. We experimentally discovered a novel way of coupling the microcavity resonances and the diffraction orders of the plasmonic metamolecule arrays with the low-quality plasmon resonance to generate multiple sharp resonances with the higher quality factors. Finally, we experimentally observed and
demonstrated a record ultra-high-Q surface lattice resonance from a plasmonic metasurface. These novel results can be used to render highly efficient
nonlinear optical responses relying on high optical field localization, and can
serve as the stepping stone towards achieving practical artificial nanophotonic devices with tailored linear and nonlinear optical responses.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/39120 |
Date | 30 April 2019 |
Creators | Saad-Bin-Alam, Md |
Contributors | Dolgaleva, Ksenia |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0019 seconds