Over the past few years, surface plasmon photodetectors have been of renewed interest. This is due to their unique double functionality of combining an SPP waveguide structure with a photodetection structure. This thesis investigates the performance of a Schottky nano-photodetector integrated into a finite width metal stripe which is covered by air on top and supported by silicon at the bottom, supporting the propagation of bound SPP modes. Properties of surface plasmons, including the sub-wavelength confinement, were exploited to increase the efficiency of the detector. The detector performance was explored via applying end-fire coupling to the fundamental supported mode, then the results were used to calculate the devices responsivity, dark current, minimum detectable power, and photocurrent for various metal lengths. End fire coupling to a Schottky mode supported by a nano-structured metal was done for what is believed to be the first time.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/33015 |
Date | January 2015 |
Creators | Mahmoud Othman, Naema |
Contributors | Berini, Pierre |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds