Return to search

Electronic and Molecular Surface Structures of Dye-Sensitized TiO2 Interfaces

The dye-sensitized solar cell is a promising solar cell technology. In these systems the key process for light to electricity conversion is molecular in nature and is initiated in dye molecules adsorbed at a semiconducting surface. This thesis focuses on the electronic and molecular surface structure of the dye/TiO2 interface, and the experimental results were obtained from surface sensitive X-ray based electron spectroscopic methods. Two families of dyes, triarylamine based organic dyes and ruthenium based inorganic dyes, were investigated. The effect of dye structural modications on the interfacial properties was studied, such as the surface concentrations, dye molecular surface orientation, molecular interactions, and energy level matching. Also, the impact of additional parameters such as the incorporation of coadsorbents and the solvents used for dye sensitization were studied and complementary photoelectrochemical characterization was used to demonstrate functional properties corresponding to changes in the molecular layers. The experiments provided information on how specic structural modications change the frontier electronic structure. The results also showed that the adsorption of the organic dye leads to submolecular electronic changes, and that the dye surface orientations in general favor effcient energy conversion. Moreover, effects of solvents and coadsorbents, on both energy level matching between the dye and the TiO2 substrate and the surfacemolecular structure were quantied.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-127166
Date January 2010
CreatorsHahlin, Maria
PublisherUppsala universitet, Yt- och gränsskiktsvetenskap, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 753

Page generated in 0.0027 seconds