Return to search

Lie-admissible structures on Witt type algebras and automorphic algebras / Structures Lie-admissibles sur les algèbres de type Witt et les algèbres automorphes

L’algèbre de Witt a été intensivement étudiée. Elle est présente dans de nombreux domaines des Mathématiques. Cette thèse est l’étude de deux généralisations de l’algèbre de Witt: les algèbres de type Witt et les algèbres de Krichever-Novikov. Dans une première partie on s’intéresse aux structures Lie-admissibles sur les algèbres de type Witt. On donne toutes les structures troisième-puissance associatives et flexibles Lie-admissibles sur ces algèbres. De plus, on étudie les formes symplectiques qui induisent un produit symétrique gauche. Dans une seconde partie on étudie les algèbres automorphes. Partant d’une surface de Riemann compacte quelconque, on considère l’action d’un sous-groupe fini du groupe des automorphismes de la surface sur des algèbres d’origines géométriques comme les algèbres de Krichever-Novikov. Plus précisément nous faisons le lien entre la sous-algèbre des éléments invariants sur la surface et l’algèbre sur la surface quotient. La structure presque-gradue des algèbres de Krichever-Novikov induit une presque-graduation sur ces sous-algèbres de certaines algèbres de Krichever- Novikov / The Witt algebra has been intensively studied and arise in many research fields in Mathematics. We are interested in two generalizations of the Witt algebra: the Witt type algebras and the Krichever-Novikov algebras. In a first part we study the problem of finding Lie-admissible structures on Witt type algebras. We give all third-power associative Lie-admissible structures and flexible Lie-admissible structures on these algebras. Moreover we study the symplectic forms which induce a graded left-symmetric product. In the second part of the thesis we study the automorphic algebras. Starting from arbitrary compact Riemann surfaces we consider the action of finite subgroups of the automorphism group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on the Riemann surface, the invariance subalgebras living on the surface to the algebras on the quotient surface under the group action. The almost-graded Krichever-Novikov algebras structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with almost-grading) on the original Riemann surface

Identiferoai:union.ndltd.org:theses.fr/2011METZ020S
Date29 September 2011
CreatorsChopp, Mikaël
ContributorsMetz, Université du Luxembourg, Benayadi, Saïd, Schlichenmaier, Martin
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds