Synthetic Aperture Radar (SAR) has been identified as a good candidate to provide high-resolution soil moisture information over extended areas. SAR data could be used as observations within a global Data Assimilation (DA) approach to benefit applications such as hydrology and agriculture. Prior to developing an operational DA system, one must tackle the following challenges of soil moisture estimation with SAR: (1) the dependency of the measured radar signal on both soil moisture and soil surface roughness which leads to an ill-conditioned inverse problem, and (2) the difficulty in characterizing spatially/temporally surface roughness of natural soils and its scattering contribution. The objectives of this project are (1) to develop a roughness measurement method to improve the spatial/temporal characterization of soil surface roughness, and (2) to investigate to what extent the inverse problem can be solved by combining multipolarization, multi-incidence, and/or multi-frequency radar measurements. The first objective is achieved with a measurement method based on Structure from Motion (SfM). It is tailored to monitor natural surface roughness changes which have often been assumed negligible although without evidence. The measurement method is flexible, a.ordable, straightforward and generates Digital Elevation Models (DEMs) for a SAR-pixel-size plot with mm accuracy. A new processing method based on band-filtering of the DEM and its 2D Power Spectral Density (PSD) is proposed to compute the classical roughness parameters. Time series of DEMs show that non-negligible changes in surface roughness can happen within two months at scales relevant for microwave scattering. The second objective is achieved using maximum likelihood fitting of the Oh backscattering model to (1) full-polarimetric Radarsat-2 data and (2) simulated multi-polarization / multi-incidence / multi-frequency radar data. Model fitting with the Radarsat-2 images leads to poor soil moisture retrieval which is related to inaccuracy of the Oh model. Model fitting with the simulated data quantifies the amount of multilooking for di.erent combinations of measurements needed to mitigate the critical e.ect of speckle on soil moisture uncertainty. Results also suggest that dual-polarization measurements at L- and C-bands are a promising combination to achieve the observation requirements of soil moisture. In conclusion, the SfM method along with the recommended processing techniques are good candidates to improve the characterization of surface roughness. A combination of multi-polarization and multi-frequency radar measurements appears to be a robust basis for a future Data Assimilation system for global soil moisture monitoring.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:650155 |
Date | January 2014 |
Creators | Snapir, Boris |
Contributors | Hobbs, S. E. |
Publisher | Cranfield University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://dspace.lib.cranfield.ac.uk/handle/1826/9253 |
Page generated in 0.0018 seconds