This dissertation involved a theoretical and experimental investigation of the adhesive forces between spherical particles of four different diameters and two selected flooring materials under different air velocities. Previous theoretical work and experiments described in the literature tended to be conducted with idealized surfaces, and therefore have limited applicability to indoor environments. Controlled experiments were designed, constructed and executed to measure the air velocity required to overcome adhesion forces. The diameters of the particles investigated were 0.5, 3.0, 5.0 and 9.9 [mu]m, and the flooring materials were linoleum and wooden flooring. The critical velocity, the flow at which 50% of the particles detached, is presented as a function of particle diameter for each surface. The measured values were then compared to empirical and theoretical models as well as to a scaling analysis that considers component forces that act on a particle-surface system. The results suggest that critical velocity decreases with increasing particle diameter and that existing models have limited applicability to resuspension from flooring materials. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/15980 |
Date | 14 June 2012 |
Creators | Lohaus, James Harold, 1968- |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0021 seconds